Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Sodium 5-nitro-2-pyridonate trihydrate

Meiyappan Muthuraman, ${ }^{\text {a }}$ Jean-François Nicoud ${ }^{\text {b }}$ and Muriel Bagieu-Beucher ${ }^{\text {a }}$ *

${ }^{\text {a }}$ Laboratoire de Cristallographie associé à l'Université Joseph Fourier, CNRS BP 166, 38042 Grenoble CEDEX, France, and ${ }^{\text {b }}$ Groupe des Matériaux Organiques, Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS et Université Louis Pasteur (UMR 7504), 23 Rue du Loess, 67037 Strasbourg CEDEX, France
Correspondence e-mail: bagieu@labs.polycnrs-gre.fr

Received 26 January 2000
Accepted 23 June 2000
The title compound, alternatively sodium pyridin-2-olate trihydrate, $\mathrm{Na}^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, crystallizes in the $P \overline{1}$ space group. It is made up of edge-shared chains of NaO_{6} octahedra with five water molecules and one 5-nitro-2-pyridonate anion. Four of these water molecules are bicoordinating, involved in connecting the adjacent octahedra, and the fifth is coordinated to only one octahedron. The crystal structure is stabilized by a network of strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ interactions. The organic moieties occupy the space between the chains with an antiparallel alignment.

Comment

Metal-organic salts containing non-linear optically (NLO) active organic chromophores have attracted much attention in recent decades. Sodium 4-nitrophenolate dihydrate (Na4NP), which crystallizes in the non-centrosymmetric space group Ima2 (Minemoto et al., 1992), is one of the extensively studied forerunners in this class of materials (Minemoto et al., 1993, 1994; Brahadeeswaran et al., 1998). Other sodium salts of 4nitrophenolates have also been studied within the context of designing efficient organic-inorganic hybrid crystals for NLO applications (Masse et al., 1999; Muthuraman et al., 1999). In these non-centrosymmetric salts, the nitrophenolate chromophores are attached to the distorted octahedral chain with a herring-bone motif and thus their molecular polarizabilities contribute efficiently to the macroscopic NLO activity (Muthuraman et al., 2000). Another analogous NLO chromophore is 5 -nitro-2-pyridone (5 N 2 py), in which one $\mathrm{C}-\mathrm{H}$ (ortho to OH) is replaced by N . The sodium salt of 5 N 2 py (Na5N2py) crystallizes as pale yellow needles. This crystal does not show any second harmonic generation activity when irradiated with a $1064 \mathrm{~nm} \mathrm{Nd}{ }^{3+}$:YAG laser, indicating a centrosymmetric crystal structure. We undertook the crystal structure investigation of this sodium salt in order to compare its crystal structure with that of non-centrosymmetric Na4NP
and to understand the effects caused by the replacement of the phenyl ring by a pyridyl ring.

A view of the asymmetric unit is shown in Fig. 1. The present crystal structure contains three water molecules, unlike Na 4 NP which is a dihydrate. Na5N2py consists of a chain of edge-shared NaO_{6} octahedra with five water molecules and one 5-nitro-2-pyridonate anion. The packing

diagram is shown in Fig. 2. The adjacent octahedral units do not share the opposite edges but form a cis-chain (Fig. 2), as in the case of MoOCl_{3} (Drew \& Tomkins, 1970). The distortion arises due to strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}[\mathrm{O} 4 \cdots \mathrm{~N} 13.011$ (2) and O5 • N N 2.992 (2) Å] interactions of the pyridine N atom with the adjacent chain. The adjacent octahedral chains are held together by strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}^{-}$interactions [O1… 4 2.755 (2), O1 \cdots O6 2.797 (2) and 2.875 (2) \AA], in addition to the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ interactions. Moreover, in the present crystal structure, only one nitro oxygen (O3) is involving in metal coordination [$\mathrm{Na} 1-\mathrm{O} 32.556$ (2) \AA] and the other (O2) forms $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions [C5 $\cdots \mathrm{O} 23.320$ (3) and O2‥O5 2.891 (2) \AA], whereas in Na4NP, both the nitro-O atoms are involved in metal coordination [$\mathrm{Na}-\mathrm{O} 2.320$ (9) and $2.664(8) \AA$. The $\mathrm{N} 2-\mathrm{O} 3$ distance $[1.213(2) \AA]$ is significantly less than those in Na4NP [1.238 (12) and 1.253 (12) \AA], which could be attributed to the lone pair of electrons on the pyridyl N atom. The organic moieties adopt an antiparallel alignment between the octahedral chains and are connected to each other by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions [C5 . . O2 3.320 (3) \AA]. Thus, the crystal structure is stabilized by an extensive strong hydrogen-bond network.

Comparison of the crystal structure of Na5N2py with the non-centrosymmetric metal 4-nitrophenolates suggests that the nitro-group bicoordination and the opposite edge-shared octahedral chain play major roles in the non-centrosymmetric crystal packing. In magnesium 4-nitrophenolate dihydrate (Sharma et al., 1997) and the isotypic sodium 4-nitro-

Figure 1
A labelled drawing of the asymmetric unit of the title compound. Displacement ellipsoids are plotted at the 50% probability level.

Figure 2
The molecular packing viewed in the $b c$ plane. The NaO_{6} octahedra are shown in an octahedral representation. All constituents of the organic molecules are represented. The small empty circles are H atoms.
phenolate-4-nitrophenol dihydrate (Muthuraman et al., 1999), the octahedral chain is formed by opposite-edge sharing. However, in these crystals, only one nitro-O atom is involved in metal coordination, which is revealed in the nearly centrosymmetric octahedra, even though they belong to the $C 2$ space group.

Experimental

The title compound was prepared by dissolving 5 -nitro-2-pyridone $(0.01 \mathrm{~mol})$ in NaOH solution $(0.01 \mathrm{~N}, 10 \mathrm{ml})$ at 313 K . Pale yellow needle crystals suitable for diffraction studies appeared after a few days and were separated from the mother liquor and air dried.

Crystal data

$\mathrm{Na}^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$Z=2$
$M_{r}=216.13$	$D_{x}=1.562 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	$\mathrm{Ag} K \alpha$ radiation
$a=7.0044(5) \AA$	Cell parameters from 2258
$b=11.182(1) \AA$	reflections
$c=6.3971(8) \AA$	$\theta=2.81-22.61^{\circ}$
$\alpha=102.978(8)^{\circ}$	$\mu=0.102 \mathrm{~mm}^{-1}$
$\beta=104.697(4)^{\circ}$	$T=296.2 \mathrm{~K}$
$\gamma=74.017(8)^{\circ}$	Needle, yellow
$V=459.40(9) \AA^{\circ}$	$0.34 \times 0.14 \times 0.11 \mathrm{~mm}$
Data collection	
KappaCCD diffractometer	$\theta_{\max }=22.61^{\circ}$
φ scans	$h=-9 \rightarrow 8$
2258 measured reflections	$k=-15 \rightarrow 14$
2258 independent reflections	$l=0 \rightarrow 8$
1573 ren	

258 independent reflections
1573 reflections with $I>3 \sigma(I)$

Refinement

Refinement on F
H -atom parameters not refined
$R=0.051$
$w=1 /\left[\sigma^{2}\left(F_{o}\right)\right]$
$w R=0.057$
$(\Delta / \sigma)_{\max }<0.00$
$S=1.910$
$\Delta \rho_{\max }=0.31 \mathrm{e}_{\AA^{-3}}$
1573 reflections
$\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}$
127 parameters
Water H atoms were found by difference Fourier syntheses and not refined. H atoms on carbon were fixed at distances of $1.08 \AA$. The

Table 1
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 5 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.71	2.05	2.755 (2)	173
$\mathrm{O} 6-\mathrm{H} 8 \cdots \mathrm{O} 1^{\text {ii }}$	0.84	2.06	2.875 (2)	166
$\mathrm{O} 6-\mathrm{H} 9 \cdots \mathrm{O} 1^{\text {iii }}$	0.84	1.96	2.797 (2)	171
$\mathrm{O} 5-\mathrm{H} 7 \cdots \mathrm{O}^{\text {iv }}$	0.66	2.24	2.891 (2)	170
$\mathrm{C} 5-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {v }}$	1.08	2.46	3.320 (3)	136
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{~N} 1^{\text {vi }}$	0.96	2.10	3.011 (2)	160
O5-H6 \cdots N1 ${ }^{\text {vii }}$	0.97	2.08	2.992 (2)	157

isotropic displacement parameters of all the H atoms were fixed at $U(\mathrm{H})_{\text {iso }}=1.5 U_{\text {eq }}$ of the parent atom and not refined.

Data collection: KappaCCD Operation Manual (Enraf-Nonius, 1998); cell refinement: KappaCCD Operation Manual; data reduction: TEXSAN (Molecular Structure Corporation, 1997-1998); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976) and MOLVIEW (Cense, 1990); software used to prepare material for publication: TEXSAN.

Financial support from the Indo-French Center for the Promotion of Advanced Research (IFCPAR contract No. 1708-1) is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GS1079). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Brahadeeswaran, S., Venkataramanan, V., Sherwood, J. N. \& Bhat, H. L. (1998). J. Mater. Chem. 8, 613-618.

Cense, J. M. (1990). MOLVIEW: Molecular Graphics for the Macintosh in Modeling of Molecular Structures and Properties, pp. 763-766. Amsterdam: Elsevier.
Drew, M. G. B. \& Tomkins, I. B. (1970). J. Chem. Soc. A, pp. 22-25.
Enraf-Nonius (1998). KappaCCD Operation Manual. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Masse, R., Nicoud, J.-F., Bagieu-Beucher, M. \& Bourgogne, C. (1999). Chem. Phys. 245, 365-375.
Minemoto, H., Ozaki, Y., Sonoda, N. \& Sasaki, T. (1993). Appl. Phys. Lett. 63, 3565-3567.
Minemoto, H., Ozaki, Y., Sonoda, N. \& Sasaki, T. (1994). J. Appl. Phys. 76, 3975-3980.
Minemoto, H., Sonoda, N. \& Miki, K. (1992). Acta Cryst. C48, 737-738.
Molecular Structure Corporation (1997-1998). TEXSAN. Version 1.04. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Muthuraman, M., Bagieu-Beucher, M., Nicoud, J.-F., Masse, R. \& Desiraju, G. R. (1999). J. Mater. Chem. 9, 1471-1475.

Muthuraman, M., Nicoud, J.-F., Masse, R. \& Desiraju, G. R. (2000). Mol. Cryst. Liq. Cryst. In the press.
Sharma, R. P., Kumar, S., Bhasin, K. K. \& Tiekink, E. R. T. (1997). Z. Kristallogr. 212, 742-744.

